

GRID STORAGE FOR THE LONG RUN

Vionx Energy Overview - CPES e3 Conference

9 March 2016

The Energy Storage Challenge

THE GRID IS BUILT TO LAST MORE THAN 20 YEARS - TRADITIONAL BATTERIES AREN'T

Grid assets: Traditional

generation, transformers, wind and solar all have asset lifetimes greater than 20 years. **Storage:** Traditional batteries like lead acid and lithium ion gradually lose energy storage capacity when cycling and need to be replaced every 5-10 years.

The Grid Battery for the Long Run

VIONX ENERGY'S VANADIUM REDOX FLOW BATTERY

20-Year Lifetime

Our technology has a life-span matching the rest of the sector's without the need for replacement of the system or its components.

Long Duration

Our storage solution offers 6 – 10 hour continuous runtimes, enough to match peak load duration and to meet capacity market runtime criteria.

Maintains Capacity

Unlike conventional long term batteries, our system capacity does not degrade over time and does not need replacement due to cycling.

Utilizing Breakthrough Technology

Leveraging Strategic Partners

CREATED AT UNITED TECHNOLOGIES, VIONX ENERGY HAS COMMERCIALIZED A DURABLE 20-YEAR BATTERY ENERGY STORAGE SYSTEM INDUSTRY PARTNERS

Contracts with & supported by:

United Technologies

Exclusive Technology License, R&D, Equity Partner

Advanced Membrane Technology Partner

SIEMENS

EPC & PCS Equipment Partner

JABIL

Manufacturing Partner

Corporate Video Link

Investment Partners:

©Vionx Energy.

Vanadium Redox Flow Batteries

FLOW TECHNOLOGY & BENEFITS

Product Animation Video Link

Energy scales independently of **Capacity** with liquid electrolyte and no added system complexity.

Stores Energy in the vanadium ion with no destruction or consumption of electrodes over time like in traditional batteries.

Safety is assured by the physical separation of reactants. Aqueous, non-flammable electrolyte operates at a low temperature.

Vanadium is fully recoverable & reusable at the end of system life.

Vionx & United Technologies' Advantage

ENABLED BY THE INNOVATION OF *X*-FLOW[™] TECHNOLOGY

Twice the power density from unique flow field with advanced electrode and membrane in a low pressure flow field

No capacity degradation & no cycling limitation over 20 year life eliminates the need to oversize or de-rate the system

Patented Technology from UTC and quality materials from 3M enables 20-year life and reliable operation.

BATTERY STACK

Advanced Electrode & Ion-Exchange Membrane

Higher power density + low pressure = greater output

No Capacity Fade With Cycling or Time

LONG LIFE LEADS TO SIGNIFICANT LCOE ADVANTAGE OVER LI-ION

©Vionx Energy.

Ft Devens "CERL" Commercial Demonstration

160KW 4 HOUR AC SYSTEM INSTALLED & OPERATIONAL 2015

Grid-Scale Projects Underway

DELIVERIES \rightarrow Q3 2015 US ARMY | Q1 & Q2 2016 NATIONAL GRID

Wind Integration (Worcester, MA)

Q2 2016 Solar Integration (Everett, MA)

160kW 4-hour VNX-C Series

- ✓ Micro-Grid Control Compatibility
- ✓ Time-of-Use Rate Reduction
- ✓ Demand Charge Reduction

500kW 6-hour VNX-C Series

- ✓ Wind Integration (600kW Wind)
- ✓ Time-of-Use Rate Reduction
- ✓ Demand Charge Reduction

national**grid**

500kW 6-hour VNX-C Series

- ✓ PV Integration (605kW Solar)
- ✓ Voltage Support
- ✓ Load Following

01

2016

VIDNX[™] ENERGY

The United Illuminating Company

March 9, 2016

Panel 2: Advanced Technology in Energy Storage

Energy, Environment & Economic Development Conference, Connecticut Power and Energy Society

UIL companies at a glance

UI Service Territory Geographic Distribution of DG 🗾 💋 🌼 🎼 🎽

...though penetration is still relatively low

How about energy storage?

Customer choice requires supporting adoption of new technologies while ...

Flexibility

moving from an "obligation to serve" to a "commitment to optimize"

Demand

Integration

Reduced peak load as a result of new approaches Projected high / low requirements with potential for revised response Baseload projected capacity requirements

Energy Storage is an important part of Ul's Demonstration Project Concept Proposals

CT Public Act 15-5, Section 103 - Demonstration Project Concepts for Grid-Side System Enhancements to Integrate Distributed Energy Resources

		Meets DEEP's goals & objectives									
#	UI Demonstration Project Name	unovati,	Deferra	Costs Prodection	Flanning Energy	Transpar	Procurs	Policy	Existing P	Othor Othor	5
1	Battery Storage to Defer Capacity Need		х	х	х	х		х		х	
2	Localized Targeting and Integration of DERs	х	х	х	х	х	х	х	х	х	
3	Hosting Capacity Analysis and Mapping			х		х				х	
4	Solar Adoption Forecast			х		х				х	
5	Base Load DG Integration			х	х	х				х	

CT Power & Energy Society

Presented by: Robert Friedland President and CEO

March 9, 2016

Proton OnSite

- Manufacturer of Proton Exchange Membrane (PEM) hydrogen generators using electrolysis as well as nitrogen and zero air products.
- Founded in 1996 as Proton Energy Systems d/b/a Proton OnSite since April 2011.
- Headquarters in Wallingford, Connecticut.
- Over 2,500 installations operating in 75+ different countries.

Hydrogen Enables Long Duration and High Power Energy Storage

- Needed to balance the fluctuating renewable energy and provide stability to grid.
- Excess or stranded renewable energy can be as high as 20-40% of rated capacity at times.
- Hydrogen can play an interesting role.

Utility Applications for Storage

Connecticut Power and Energy Society Meeting Cromwell, CT, March 9, 2016

> Hydrogen a new energy r our planet

based in

A portfolio of innovative products thanks to 13 years of R&D...

H₂ production units

A full range: Small, medium and largescale hydrogen production units (electrolyzers)

H₂ solid storage units

➔ Exclusive technology for storing hydrogen in solid form large scale solution

A disruptive, green, safe and

Years of experience in producing hydrogen through water electrolysis, a mature technology

... addressing 2 main high-growing markets

Industry

Energy & mobility

Power to Gas concept

McPhy | March 2016 | CPES Presentation

P2G & Energy Storage Projects

Werlte, integrated facilities: Biomass – H2 – Methanation – CH4

Audi Project - Overview

Audi e-Gas Project Design

~2800 kg/day H2 production with 3 x 2 MW Electrolysers McPhy Energy

JUPITER 1000 – un projet innovant porté par un consortium solide piloté par GRT Gaz

Consortium : 7 Partenaires Industriels, 1 Laboratoire R&D

Une plateforme innovante : Capture de CO2, Production d'H2 (1 MW) et de Méthane de synthèse

Hydrogen a new energy r our planet

